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A multi-layered orthotropic material with a center crack is subjected to an anti-plane shear
loading. The problem is formulated as a mixed boundary value problem by using the Fourier
integral transform method. This gives a Fredholm integral equation of the second kind. The
integral equation is solved numerically and anti-plane shear stress intensity factors are analyzed
in terms of the material orthotropy for each layer, number of layers, crack length to layer
thickness and the order of the loading polynomial. Also, the case of monolithic and hybrid
composites are investigated in terms of the local fiber volume fraction and the global fiber
volume fraction.
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Layered materials can be used for high perfor­
mance structures to have a high strength-to
-weight ratio and, when cracks are present, there
is the potential danger that they might cause
premature failure. The intensity of the stress
ahead of the crack tip is a parameter to evaluate
how load, composite geometry and material
would affect the local stress field. The critical
value of the stress intensity factor is used to study
the fracture behavior of layered composites. Sih
and Chen (1981) used Integral transforms for
studying composite materials with cracks under
two- and three-dimensional loads. An interface
crack between two different orthotropic layers
under plane extension is studied by Zhang
(1989) ; Sung and Liou(1995) studied the case of
an internal crack in a clamped orthotropic half
plane. Stress intensity factor using finite elements
was calculated by Lengo and McCallion (1997)
for orthotropic materials; boundary integral was
applied to solve the problem of crack normal to
the multi-layered interface under tension (Lin and
Keer, 1989). Anti-symmetric loading and com­
bined normal and shear loads solved by Lee et al.
(1994; 1996). An inter-laminar crack under nor­
mal and shear load in multi-layered materials
were studied in previous studies (Kim et al. 1998a;
1998b).

The anti-plane shear stress intensity factor for a
finite interface crack between inner layers of four­
layered composite was examined by Chen and Sih
(1973) and the case for anti-symmetric shear
loadings was investigated by Erdogan and Gupta
(1971). Three-layered orthotropic material with
a crack under anti-plane shear loading was repor-

J.ly(j) : Shear modulus in y direction

for the jth layer
: Fourier transformation variable
: Stress components for the jth

layer
: Integration abscissas for Gaus­

sian.Quadrature integration
: Displacement components in z

direction for the jth layer

1. Introduction

ted by Kim et al. (1999). This paper investigates
the multi-layered orthotropic material with a
crack under anti-plane shear loading. A Fred­
holm integral equation is derived by the Fourier
integral transform method to evaluate the anti­
plane shear stress intensity factor by solving the
integral equation numerically. The effects of
material orthotropy for each layers, number of
layers, crack length to layer thickness and the
order of the loading polynomial are evaluated.
Also, the case of monolithic and hybrid compos­
ites are investigated in terms of the local fiber
volume fraction and the global fiber volume frac­
tion.

2. Problem Formulation

Consider a plane strain type multi-layered
material with a center crack subjected to an anti­
plane shear crack surface loading as illustrated in
Fig. I. The crack surface is parallel to the layer
interface and perfect bonding between orthotropic
layers is assumed. Using the Fourier integral
transformation, stress and displacement compo­
nents can be formulated as given by Kim et al.
(1999) .

_ 2 t: sc, [COS~XJ
r yz(j)-J.lY(j)1iJo ay sin~x d~

2 £"" [-Sin~xJrXZ(j) = J.lX(j)- Cj~ d~
7C 0 cos~x

._~.
J.Lx(n) ,J.Ly(n)· nth layer

I
1--- --~-------1~
, IJ-x(n) ,J.Ly(n) nth layer ,t._. .- . 1

Fig. 1 Geometry and configuration of the model
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The subscript j = I represents the first layer
where a crack is located and ryz(j), rXZU) and WUl

represent stress and displacement components. J.l

xU) and J.lyU) are x and y directional shear moduli
of the j-th layer, and coefficients A j and B, are to
be determined.

Referring to Fig. I, only the upper half plane is
considered due to the symmetry; boundary condi­
tions are

ryzm=-g(X) Ix I :E:.a, y=O

wm=O Ix I '>a; y=O

ryzUl=rYZU+I) Ix 1<00, y=hj(j=I,

"', n-I)

W(j)=WU+l) Ix 1<00, y=hj(j=I,

"', n-I)

ryz(nl=O Ix 1<00, y=hn (3)

where hj(j=I, "', n) is the interfacial location
coordinate to j-th layer and g (x) is an anti­
plane shear crack surface loading.

where /hk and /hk+! are the given influence coeffi­
cients for the symmetric and anti-symmetric load­
ing parts, respectively.

The crack surface loading g (x) is separated
into symmetric and anti-symmetric loading parts
without loss of generality. By applying the bound­
ary conditions (3) to Eq. (I) , a pair of dual
integral equations is obtained for each loading
part as follows,

("'N(~)[C~~X]d~=[O] Ixl >a (5)
)0 sm~x 0

r:~F(~)M(~)[C~~X]d~
)0 sm~x

(

/hk(~r )
7C a Ixl ~a (6)

2./J.lX(I)J.ly(l) ( X )2k+1
/hk+I(i

where

F (~) = Al C;) - BI C;) (7)
. - M(~)

M (~) =AI (~) +B I (~) (8)

Furthermore, Al (~) and BI (~) are defined as
follows:

(9)

where

T= [BI , A 2, B2, ~, B3, "', Am Bn]T (10)

R=[Rb R 2, R3, "', R2n-IF (II)

RI=Ilx eP,lJr-TxAI (~), R2=ePtlJr-T xAI (~)

R3=R4=,··=R2n-I=O(Il='/J.lX(llJ.lY(I) /

./J.lX(2)J.lY(2) ' /31 =./J.lX(l) 7J.lY(I»

~=a~, n=./J.lX(2lJ.lY(2l / ./J.lX(3)J.lY(3)

where, Il indicates the ratio of strength of cracked
layer and the neighboring layer while /31 denotes
the degree of orthotropy for the cracked layer and
Q is found in Appendix.

By following the method by Copson(1961),

M(~) = (a[ rP2k(t)JO(~t) ]dt (12)
)0 r/J'lk+dt)!I (~t)

where Jo and !I are the Bessel functions of the first
kind of order 0 and I, respectively. Also, rP2k(t)

and ¢2k+l (t) are to be determined. By Eq. (12),
Eq. (5) is satisfied automatically and Eq. (6) is
reduced to the form of Fredholm integral equa­
tion of a second kind.

[
(])2k(O') ]+ (IK(r, 0')[ (])2k(r) ]dr

Pik+1(0'»)0 Pik+1 (r)

[
q2k(O') ] (13)

= 12k+1 (a)

where

K(r, a) =5161'"a(F(a / a) -I)

[
' Jo(ar)Jo(aO')]da
!I (ar)JI(aO')

q2k(a) (2k-l) ! ! ~k+1I2
(2k)! !

12k+!(a) (2k + I) ! ! ~k+312
(2k+2) ! !

(2k+2)!! = (2k+2) x (2k), "', 4x2
(2k+ I)!! = (2k+ 1) x (2k-I), "', 3x 1
(2k)!! = (2k) x (2k-2), "', 4x2
(2k-l)!!=(2k-l)x(2k-3), ''', 3xI
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t=-ar, s=-aa, ~=-JJ..., x==ax
a

rP2k (t) =- 2./ lrP2k air(JJ2k ( r), rP2k+ 1 (t)
j.lX(l)j.ly(l)

lr/hk+l C 1Tr () (14)
2./ a" t ~2k+l t:

j.lX(llj.ly(l)

To solve the Fredholm integral equation, the
Gaussian quadrature integration technique is
utilized.

where

_lJ[Jo (arrm)Jo(ar<Jn)] W (ar) (16)
I, (arrm)It (ar<Jn)

At O'n=rn(n=l, 2, "', NL ) , (JJ2k(rm) and 1fI2k+l
(rm) are determined numerically as follows,

3. Numerical Results and Discussion

Consider the case of orthotropic three-layered
material (n=3) with two outer half spaces. The
dimensionless stress intensity factors of the right

crack tip, KIll / Poffl' is shown in Fig. 2 as a
function of hs ] a with r=5.0 and agrees with
Chen and Sih(1973). The convergency of the
numerical solution is listed in Table 1 and good
accuracy is found.

Next, the case of multi-layer is considered. For
simplicity, it is assumed that all the layers are

composed of identical thickness (tl = t2='" = tn=

to) and the values of the shear moduli of the
layers are gradually increasing or decreasing. In
Fig. 3, the dimensionless stress intensity factors
for each term of polynomial loading increases as
a / to and shear modulus ratio increases. Also, the
dimensionless stress intensity factors decreases as
q increases as discussed in previous studies (Lee
et ai. 1994, 1996; Kim et al., 1998a, 1998b). When
the layer is relatively thin (a / to=4.0) , the dimen­
sionless stress intensity factors decreases drasti­
cally as the number of layers (n) increases.

_IJ[Jo(arrm)Jo(arrn)] W(ar) (18)
It (arrm)I, (arrn)

omn is Kronecker's delta; W(rm) and W(ar)

are the weight factors for Gaussian quadrature
with NL and NM being the number of integration
points.

The stress intensity factors at the crack tips are
calculated.

- present solution

+ + +- Chen's solution

K II IR = lim./2 (x - a)n) ryz(l) (x, 0)
x-a+

K IIIL = lim ./-2(x+a) n) rYZ(l) (x, 0) (19)
x--a-

where K IllR and K lIlL refer to the right and left
crack tips, respectively. After some integral
manipulation for ryz ( l ) (x, 0), it is found that

K II IR = ffl f {(JJ2k ( 1) hk+ 1fI2k+1(l) P2k +l}
k=O

K IllL= ffl f {- (JJ2k (1) P2k + 1fI2k+l (1) hk+l} (20)
k=O

~ \ I..

1.2i\ ~ ~_._~
r ~ -----.- i
I 4.0 ~----_-===F, ~-J'~'1.0 1
L_---.L- j I I I ! ~

0.0 0.5 1,0 1.5 2.0
h1/a

Fig. 2 Comparison of presentnumerical resultswith
previous solution (Chen, 1973) with II =5.0
when q=O
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Table 1 Converging behavior for dimensionless mode III SIFs for various numbers of Gaussian...Quadrature
points.

Dimensionless SIFs, K1;11 rofi(i

r=2.0 r=2.0 r=0.5 r=l.o
/11 = 1.0 /11= 1.0 /11=2.0 /11=0.5

/11 = 1.0 /12= 1.0 /12=2.0 /12=0.5
aI h l=1.0 aI h1=1.0 al hl=3.0 a I hl=5.0

Nc NQ aI h2=0.5 a I h2=0.1 a I h2=0.5 a I h2=0.5

48 20 1.0856469 1.0540672 0.9230966 1.1493117
30 1.0856469 1.0540672 0.9230966 1.1493117
50 1.0856469 1.0540672 0.9230966 1.1493117
100 1.0856469 1.0540672 0.9230966 I.l493117

54 20 1.0856474 1.0540673 0.9230966 1.1493118
30 1.0856474 1.0540673 0.9230966 I.l493118
50 1.0856474 1.0540673 0.9230966 I.l493118
100 1.0856474 1.0540673 0.9230966 1.1493118

60 20 1.0856471 1.0540673 0.9230967 I.l493119
30 1.0856471 1.0540673 0.9230967 I.l493119
50 1.0856471 1.0540673 0.9230967 I.l493 I 19
100 1.0856471 1.0540673 0.9230967 I.l493119

1.21

ff;;
0.8 ---- q=O

---~---q=1

I

0.6r n~2..-~ __ - _ - - - - - - - - - - - - - - - i
!

0.4 I I I I J

024
r

(a) a I fo= 1.0 (b) a I to=4.0

Fig. 3 Dimensionless mode III stress intensity factor for multi-layer case:
(a) a I to= 1.0 and (b) a I to=4.0

3.1 Case of monolithic composites
As an application of the multi-layered analysis,

the case of monolithic composites composed of
E-glass and epoxy is considered in Fig. 4. The
material properties are summarized in Table 2.
The local fiber volume fraction near the cracked
epoxy layer region, VLF , is defined as

V,LF tf (21)
tmo +tf

Also, the global fiber volume fraction far from the
cracked epoxy layer region, VCF , is defined as

(22)

In the numerical analysis, VLF was selected to be
equal to 0.2 and 0.8, whereas VCF was the values
0.3, 0.5 and 0.8 and a I tmo varing from 0.1 to 2.
O. In Fig. 5, the dimensionless stress intensity
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Table 2 The material properties used for composites
(Schwartz, 1992)

r-------T-------~

I

1m

x

g(x) 1'/21=
--I

I

Shear modulus(GPa)
Type

f,lx f,ly

E-glass 35.0 7.0
Boron 165.0 28.0
Epoxy 1.33 1.33

r------~l-------~
I

I

1.0 r-c,-----------------------,

0.8

, I
IV -0.2 . I

\V-D.B
1 •

1.6 2.0

........

0.+
ffiol

0.6-

I q -1

0.+ :=~
I----~~

0.2 1 ..~
0.0 0.4 0.8 12

a I lmo

Fig. 7 Comparison of dimensionless mode III stress
intensity factors between monolithic and
hybrid composites

Fig. 6 Geometry of hybrid composites

1.0 r-c:-----------------x

~::oO.2

1------;:'

---- VOP-O.3
- - - \,fp-O.5
- - - - - - - ~ _ 0.8q=O

Fig. 4 Geometry of monolithic composites

i
1 __- ~_

0.6

0.8

ence the stress intensity factors. When the local
fiber volume fraction is low ( VLF =0.2), however,
the global fiber volume fraction (VGF) contrib­
utes significantly to the dimensionless stress inten­
sity factors if the cracked epoxy layer is thin (a /

tma >1).1.6 2.0

VV'-O.8

\AJr-O.8
q=1

0.2 . .~.~-.--------

0.0 0.4 0.8 1.2
a I lmo

0.4 --

Fig. 5 Dimensionless mode III stress intensity factor
for monolithic composites

factors for each term (q=O and I) of polynomial
loading and for various local and global fiber
volume fractions are analyzed. When the local
fiber volume fraction is high ( VLF =0.8), the
global fiber volume fraction does merely influ-

3.2 Case of hybrid composites
The hybrid composites case as shown in Fig. 6

is considered. The local fiber volume fraction
near the cracked epoxy layer region, VLF , is
defined as

(23)
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The stresss intensity factors for a center crack
subjected to an anti-plane shear loading in the
orthotropic multi-layered material is analyzed by
Fourier integral transform method. The following
conclusions are obtained:

(I) The limiting case for the present solution
agrees with Chen and Sih (1973) .

(2) For the case of multi-layered material, the
dimensionless stress intensity factors for each term
of polynomial loading increases as crack length to
layer thickness ratio and shear modulus ratio
increases, and as the number of layer and the
order of each term of polynomial loading
decreases.

(3) For the case of monolithic and hybrid
composites, it is found that relatively larger
dimensionless stress intensity factors are produced
when the local fiber volume fraction is low. Also,
the global fiber volume fraction contributes sig­
nificantly to the dimensionless stress intensity
factors if the cracked matrix layer is thin.
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The elements of Q in Eq. (9) is as follows.

(AI)

(A2)

Appendix

Q(2j-l)(2j-l) = Ije-PJ'{i

Q(2j-l)(2j) = ePJ+l~
!r.

Q(2j-1J(2j+l) = - e-PJ
+

1 a e

Q - -pAR
(2j)(2j-l)- - e a

Q(2jJ(2j) = ePJ+I~

Q(2jJ(2j+l)=e-PJ+l~(j= 1 to n-l)

Q r pAR
(2j-l)(2j-2)= - je a

Q(2j)(2j-2) = -e
PJ'{i(j=2

to n-l)

Q(2n-1J(2n-2) = 1.0

Q -2B~
(2n-1J(2n-2)=-e a (A3)

where /3 i = h.lx( i) 7}.ly(i), r, == J }.lX(j)}.ly(j) /

J}.lX(j+ l )}.ly (j+ 1) (j=l, "', n-l)
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